Show simple item record

dc.contributor.authorLetourneau, Pierre-David
dc.contributor.authorDemanet, Laurent
dc.contributor.authorCalandra, Henri
dc.date.accessioned2018-05-21T16:49:45Z
dc.date.available2018-05-21T16:49:45Z
dc.date.issued2012
dc.identifier.issn1949-4645
dc.identifier.urihttp://hdl.handle.net/1721.1/115543
dc.description.abstractWe present a method for approximately inverting the Hessian of full waveform inversion as a dip-dependent and scale-dependent amplitude correction. The terms in the expansion of this correction are determined by least-squares fitting from a handful of applications of the Hessian to random models — a procedure called matrix probing. We show numerical indications that randomness is important for generating a robust preconditioner, i.e., one that works regardless of the model to be corrected. To be successful, matrix probing requires an accurate determination of the nullspace of the Hessian, which we propose to implement as a local dip-dependent mask in curvelet space. Numerical experiments show that the novel preconditioner fits 70% of the inverse Hessian (in Frobenius norm) for the 1-parameter acoustic 2D Marmousi model.en_US
dc.description.sponsorshipTOTAL (Firm)en_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.publisherSociety of Exploration Geophysicistsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1190/SEGAM2012-1262.1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleApproximate inversion of the wave-equation Hessian via randomized matrix probingen_US
dc.typeArticleen_US
dc.identifier.citationLetourneau, Pierre-David, Laurent Demanet, and Henri Calandra. “Approximate Inversion of the Wave-Equation Hessian via Randomized Matrix Probing.” SEG Technical Program Expanded Abstracts 2012 (September 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDemanet, Laurent
dc.relation.journalSEG Technical Program Expanded Abstracts 2012en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-17T18:14:45Z
dspace.orderedauthorsLetourneau, Pierre-David; Demanet, Laurent; Calandra, Henrien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7052-5097
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record