MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors

Author(s)
Mackin, Charles Edward; McVay, Elaine D.; Palacios, Tomas
Thumbnail
Downloadsensors-18-00494.pdf (3.819Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs). Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs.
Date issued
2018-02
URI
http://hdl.handle.net/1721.1/115552
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Sensors
Publisher
MDPI AG
Citation
“Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors.” Sensors 18, 2 (February 2018): 494 © 2018 The Authors
Version: Final published version
ISSN
1424-8220

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.