MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Abelian F-theory models with charge-3 and charge-4 matter

Author(s)
Raghuram, Nikhil
Thumbnail
Download13130_2018_Article_8201.pdf (796.5Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This paper analyzes U(1) F-theory models admitting matter with charges q = 3 and 4. First, we systematically derive a q = 3 construction that generalizes the previous q = 3 examples. We argue that U(1) symmetries can be tuned through a procedure reminiscent of the SU(N ) and Sp(N ) tuning process. For models with q = 3 matter, the components of the generating section vanish to orders higher than 1 at the charge-3 matter loci. As a result, the Weierstrass models can contain non-UFD structure and thereby deviate from the standard Morrison-Park form. Techniques used to tune SU(N ) models on singular divisors allow us to determine the non-UFD structures and derive the q = 3 tuning from scratch. We also obtain a class of a q=4 models by deforming a prior U(1) × U(1) construction. To the author’s knowledge, this is the first published F-theory example with charge-4 matter. Finally, we discuss some conjectures regarding models with charges larger than 4. Keywords: F-Theory, Superstring Vacua
Date issued
2018-05
URI
http://hdl.handle.net/1721.1/115556
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
Raghuram, Nikhil. “Abelian F-Theory Models with Charge-3 and Charge-4 Matter.” Journal of High Energy Physics, vol. 2018, no. 5, May 2018. © 2018 The Authors
Version: Final published version
ISSN
1029-8479

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.