Show simple item record

dc.contributor.authorGuillemin, Victor W
dc.date.accessioned2018-05-22T17:31:38Z
dc.date.available2018-05-22T17:31:38Z
dc.date.issued2013-04
dc.identifier.issn0273-0979
dc.identifier.issn1088-9485
dc.identifier.urihttp://hdl.handle.net/1721.1/115557
dc.description.abstractOne way to think of semi-classical analysis is as an investigation of the mathematical implications of the Bohr correspondence principle: the assertion that classical mechanics is the limit, as tends to zero, of quantum mechanics.en_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/S0273-0979-2013-01409-5en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleBook Review: Semi-classical analysisen_US
dc.typeArticleen_US
dc.identifier.citationGuillemin, Victor. “Book Review: Semi-Classical Analysis.” Bulletin of the American Mathematical Society, vol. 50, no. 4, Apr. 2013, pp. 681–83. © 2013 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGuillemin, Victor W
dc.relation.journalBulletin of the American Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-22T15:01:56Z
dspace.orderedauthorsGuillemin, Victoren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2641-1097
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record