dc.contributor.author | Guth, Lawrence | |
dc.date.accessioned | 2018-05-22T17:59:47Z | |
dc.date.available | 2018-05-22T17:59:47Z | |
dc.date.issued | 2013-05 | |
dc.identifier.isbn | 9781461472582 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/115560 | |
dc.description.abstract | In the last 6 years, several combinatorics problems have been solved in an unexpected way using high degree polynomials. The most well-known of these problems is the distinct distance problem in the plane. Keywords: Algebraic Structure, Finite Field, Combinatorial Structure, Joint Problem, Partial Symmetry | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-1-4614-7258-2_31 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT Web Domain | en_US |
dc.title | Unexpected Applications of Polynomials in Combinatorics | en_US |
dc.title.alternative | The Mathematics of Paul Erdős | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Guth, Larry. “Unexpected Applications of Polynomials in Combinatorics.” The Mathematics of Paul Erdős I, edited by Ronald L. Graham et al., Springer New York, 2013, pp. 493–522. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Guth, Lawrence | |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-05-22T15:24:53Z | |
dspace.orderedauthors | Guth, Larry | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-1302-8657 | |
mit.license | OPEN_ACCESS_POLICY | en_US |