MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polynomial Wolff axioms and Kakeya-type estimates in R4

Author(s)
Guth, Lawrence; Zahl, Joshua
Thumbnail
Download1701.07045.pdf (350.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We establish new linear and trilinear bounds for collections of tubes in R4 that satisfy the polynomial Wolff axioms. In brief, a collection of δ-tubes satisfies the Wolff axioms if not too many tubes can be contained in the δ-neighborhood of a plane. A collection of tubes satisfies the polynomial Wolff axioms if not too many tubes can be contained in the δ-neighborhood of a low degree algebraic variety. First, we prove that if a set of δ-3 tubes in R4 satisfies the polynomial Wolff axioms, then the union of the tubes must have volume at least δ1-1/28. We also prove a more technical statement which is analogous to a maximal function estimate at dimension 3+1/28. Second, we prove that if a collection of δ-3 tubes in R4 satisfies the polynomial Wolff axioms, and if most triples of intersecting tubes point in three linearly independent directions, then the union of the tubes must have volume at least δ3/4. Again, we also prove a slightly more technical statement which is analogous to a maximal function estimate at dimension 3+1/4. We conjecture that every Kakeya set satisfies the polynomial Wolff axioms, but we are unable to prove this. If our conjecture is correct, it implies a Kakeya maximal function estimate at dimension 3+1/28, and in particular this implies that every Kakeya set in R4 must have Hausdorff dimension at least 3+1/28. This would be an improvement over the current best bound of 3, which was established by Wolff in 1995.
Date issued
2018-04
URI
http://hdl.handle.net/1721.1/115562
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the London Mathematical Society
Publisher
Oxford University Press - London Mathematical Society
Citation
Guth, Larry, and Joshua Zahl. “Polynomial Wolff Axioms and Kakeya-Type Estimates in R4.” Proceedings of the London Mathematical Society, Apr. 2018.
Version: Author's final manuscript
ISSN
0024-6115
1234-5678

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.