MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal function spaces for continuity of the Hessian determinant as a distribution

Author(s)
Baer, Eric; Jerison, David S
Thumbnail
Download1411.5303.pdf (317.0Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We establish optimal continuity results for the action of the Hessian determinant on spaces of Besov type into the space of distributions on R[superscript N]. In particular, inspired by recent work of Brezis and Nguyen on the distributional Jacobian determinant, we show that the action is continuous on the Besov space of fractional order B(2-2/N,N), and that all continuity results in this scale of Besov spaces are consequences of this result.A key ingredient in the argument is the characterization of B(2-2/N,N) as the space of traces of functions in the Sobolev space W[superscript 2,N](R[superscript N+2]) on the subspace R[superscript N] of codimension 2. The most delicate and elaborate part of the analysis is the construction of a counterexample to continuity in B(2-2/N,p) with p > N.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/115565
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Functional Analysis
Publisher
Elsevier BV
Citation
Baer, Eric, and David Jerison. “Optimal Function Spaces for Continuity of the Hessian Determinant as a Distribution.” Journal of Functional Analysis, vol. 269, no. 5, Sept. 2015, pp. 1482–514.
Version: Original manuscript
ISSN
0022-1236

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.