| dc.contributor.author | Guth, Lawrence | |
| dc.contributor.author | Suk, Andrew | |
| dc.date.accessioned | 2018-05-22T20:53:49Z | |
| dc.date.available | 2018-05-22T20:53:49Z | |
| dc.date.issued | 2015-04 | |
| dc.date.submitted | 2013-08 | |
| dc.identifier.issn | 0097-3165 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/115574 | |
| dc.description.abstract | We prove that in a simple matroid, the maximal number of joints formed by L lines is o(L[superscript 2]) and Ω(L[superscript 2-ε]) for any ε > 0. Keywords: Matroids, The joints problem, Arithmetic progression | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Postdoctoral Fellowship) | en_US |
| dc.publisher | Elsevier BV | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1016/J.JCTA.2014.11.003 | en_US |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | The joints problem for matroids | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Guth, Larry, and Andrew Suk. “The Joints Problem for Matroids.” Journal of Combinatorial Theory, Series A, vol. 131, Apr. 2015, pp. 71–87. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Guth, Lawrence | |
| dc.contributor.mitauthor | Suk, Andrew | |
| dc.relation.journal | Journal of Combinatorial Theory, Series A | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2018-05-22T16:17:32Z | |
| dspace.orderedauthors | Guth, Larry; Suk, Andrew | en_US |
| dspace.embargo.terms | N | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0002-1302-8657 | |
| mit.license | PUBLISHER_CC | en_US |