Show simple item record

dc.contributor.authorGuth, Lawrence
dc.contributor.authorSuk, Andrew
dc.date.accessioned2018-05-22T20:53:49Z
dc.date.available2018-05-22T20:53:49Z
dc.date.issued2015-04
dc.date.submitted2013-08
dc.identifier.issn0097-3165
dc.identifier.urihttp://hdl.handle.net/1721.1/115574
dc.description.abstractWe prove that in a simple matroid, the maximal number of joints formed by L lines is o(L[superscript 2]) and Ω(L[superscript 2-ε]) for any ε > 0. Keywords: Matroids, The joints problem, Arithmetic progressionen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Postdoctoral Fellowship)en_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.JCTA.2014.11.003en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleThe joints problem for matroidsen_US
dc.typeArticleen_US
dc.identifier.citationGuth, Larry, and Andrew Suk. “The Joints Problem for Matroids.” Journal of Combinatorial Theory, Series A, vol. 131, Apr. 2015, pp. 71–87.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGuth, Lawrence
dc.contributor.mitauthorSuk, Andrew
dc.relation.journalJournal of Combinatorial Theory, Series Aen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-22T16:17:32Z
dspace.orderedauthorsGuth, Larry; Suk, Andrewen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1302-8657
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record