dc.contributor.author | Guth, Lawrence | |
dc.date.accessioned | 2018-05-23T13:16:02Z | |
dc.date.available | 2018-05-23T13:16:02Z | |
dc.date.issued | 2015-05 | |
dc.date.submitted | 2015-01 | |
dc.identifier.issn | 0894-0347 | |
dc.identifier.issn | 1088-6834 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/115579 | |
dc.description.abstract | If S is a smooth compact surface in ℝ[superscript 3] with strictly positive second fundamental form, and E [subscript S] is the corresponding extension operator, then we prove that for all [Formula presented]. The proof uses polynomial partitioning arguments from incidence geometry. | en_US |
dc.publisher | American Mathematical Society (AMS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/JAMS827 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Mathematical Society | en_US |
dc.title | A restriction estimate using polynomial partitioning | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Guth, Larry. “A Restriction Estimate Using Polynomial Partitioning.” Journal of the American Mathematical Society 29, 2 (May 2015): 371–413 © 2015 American Mathematical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Guth, Lawrence | |
dc.relation.journal | Journal of the American Mathematical Society | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-05-22T16:20:27Z | |
dspace.orderedauthors | Guth, Larry | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-1302-8657 | |
mit.license | PUBLISHER_POLICY | en_US |