Show simple item record

dc.contributor.authorGuth, Lawrence
dc.date.accessioned2018-05-23T13:16:02Z
dc.date.available2018-05-23T13:16:02Z
dc.date.issued2015-05
dc.date.submitted2015-01
dc.identifier.issn0894-0347
dc.identifier.issn1088-6834
dc.identifier.urihttp://hdl.handle.net/1721.1/115579
dc.description.abstractIf S is a smooth compact surface in ℝ[superscript 3] with strictly positive second fundamental form, and E [subscript S] is the corresponding extension operator, then we prove that for all [Formula presented]. The proof uses polynomial partitioning arguments from incidence geometry.en_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/JAMS827en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleA restriction estimate using polynomial partitioningen_US
dc.typeArticleen_US
dc.identifier.citationGuth, Larry. “A Restriction Estimate Using Polynomial Partitioning.” Journal of the American Mathematical Society 29, 2 (May 2015): 371–413 © 2015 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGuth, Lawrence
dc.relation.journalJournal of the American Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-22T16:20:27Z
dspace.orderedauthorsGuth, Larryen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1302-8657
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record