Show simple item record

dc.contributor.authorJerison, David S
dc.contributor.authorKamburov, Nikola Angelov
dc.date.accessioned2018-05-23T13:27:34Z
dc.date.available2018-05-23T13:27:34Z
dc.date.issued2015-11
dc.date.submitted2015-08
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttp://hdl.handle.net/1721.1/115581
dc.description.abstractWe study classical solutions to the one-phase free boundary problem in which the free boundary consists of smooth curves and the components of the positive phase are simply connected. We characterize the way in which the curvature of the free boundary can tend to infinity. Indeed, if curvature tends to infinity, then two components of the free boundary are close, and the solution locally resembles an entire solution discovered by Hauswirth, Hélein, and Pacard, whose free boundary has the shape of a double hairpin. Our results are analogous to theorems of Colding and Minicozzi characterizing embedded minimal annuli, and a direct connection between our theorems and theirs can be made using a correspondence due to Traizet.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1069225)en_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/IMRN/RNV339en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleStructure of One-Phase Free Boundaries in the Planeen_US
dc.typeArticleen_US
dc.identifier.citationJerison, David and Nikola Kamburov. “Structure of One-Phase Free Boundaries in the Plane.” International Mathematics Research Notices 2016, 19 (November 2015): 5922–5987 © 2015 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorJerison, David S
dc.contributor.mitauthorKamburov, Nikola Angelov
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-22T16:42:19Z
dspace.orderedauthorsJerison, David; Kamburov, Nikolaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9357-7524
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record