Show simple item record

dc.contributor.authorFigalli, Alessio
dc.contributor.authorJerison, David S
dc.date.accessioned2018-05-23T13:46:01Z
dc.date.available2018-05-23T13:46:01Z
dc.date.issued2015-05
dc.identifier.issn1435-9855
dc.identifier.urihttp://hdl.handle.net/1721.1/115583
dc.description.abstractGiven a measurable set A ⊂ ℝ[superscript n] of positive measure, it is not difficult to show that |A + A| = |2A| if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If (|A + A| - |2A|)/|A| is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of (|A + A| - |2A|)/|A|. Keywords: Quantitative stability, sumsets, Freiman’s theoremen_US
dc.publisherEuropean Mathematical Publishing Houseen_US
dc.relation.isversionofhttp://dx.doi.org/10.4171/JEMS/527en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleQuantitative stability for sumsets in R[superscript n]en_US
dc.typeArticleen_US
dc.identifier.citationFigalli, Alessio, and David Jerison. “Quantitative Stability for Sumsets in R[superscript n].” Journal of the European Mathematical Society, vol. 17, no. 5, 2015, pp. 1079–106.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorJerison, David S
dc.relation.journalJournal of the European Mathematical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-22T17:10:08Z
dspace.orderedauthorsFigalli, Alessio; Jerison, Daviden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9357-7524
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record