MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Some remarks on non-commutative principal ideal rings

Author(s)
Carpentier, Sylvain; De Sole, Alberto; Kac, Victor
Thumbnail
Download1305.0380.pdf (117.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Abstract We prove some algebraic results on the ring of matrix differential operators over a differential field in the generality of non-commutative principal ideal rings. These results are used in the theory of non-local Poisson structures. Résumé Nous démontrons quelques résultats algébriques sur lʼanneau des matrices dʼopérateurs différentiels sur un corps différentiel dans le cas général des anneaux principaux non commutatifs. Ces résultats sont utilisés dans la théorie des structures de Poisson non locales.
Date issued
2013-02
URI
http://hdl.handle.net/1721.1/115831
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Comptes Rendus Mathematique
Publisher
Elsevier
Citation
Carpentier, Sylvain et al. “Some Remarks on Non-Commutative Principal Ideal Rings.” Comptes Rendus Mathematique 351, 1–2 (January 2013): 5–8 © 2013 Académie des sciences
Version: Author's final manuscript
ISSN
1631-073X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.