MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explaining key properties of lithiation in TiO[subscript 2]-anatase Li-ion battery electrodes using phase-field modeling

Author(s)
de Klerk, Niek J. J.; Vasileiadis, Alexandros; Wagemaker, Marnix; Smith, Raymond Barrett; Bazant, Martin Z
Thumbnail
DownloadPhysRevMaterials.1.025404.pdf (3.751Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. Phase-field modeling has recently been shown to have this ability, providing new opportunities to gain understanding of these complex systems. In this paper, a novel electrochemical phase-field model is presented that captures the thermodynamic and kinetic properties of lithium insertion in TiO[subscript 2]-anatase, a well-known and intensively studied Li-ion battery electrode material. Using a linear combination of two regular solution models, the two phase transitions during lithiation are described as lithiation of two separate lattices with different physical properties. Previous elaborate experimental work on lithiated anatase TiO[subscript 2] provides all parameters necessary for the phase-field simulations, giving the opportunity to gain fundamental insight in the lithiation of anatase and validate this phase-field model. The phase-field model captures the essential experimentally observed phenomena, rationalizing the impact of C rate, particle size, surface area, and the memory effect on the performance of anatase as a Li-ion battery electrode. Thereby a comprehensive physical picture of the lithiation of anatase TiO[subscript 2] is provided. The results of the simulations demonstrate that the performance of anatase is limited by the formation of the poor Li-ion diffusion in the Li[subscript 1]TiO[subscript 2] phase at the surface of the particles. Unlike other electrode materials, the kinetic limitations of individual anatase particles limit the performance of full electrodes. Hence, rather than improving the ionic and electronic network in electrodes, improving the performance of anatase TiO[subscript 2] electrodes requires preventing the formation of a blocking Li[subscript 1]TiO[subscript 2] phase at the surface of particles. Additionally, the qualitative agreement of the phase-field model, containing only parameters from literature, with a broad spectrum of experiments demonstrates the capabilities of phase-field models for understanding Li-ion electrode materials, and its promise for guiding the design of electrodes through a thorough understanding of material properties and their interactions.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/115837
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Physical Review Materials
Publisher
American Physical Society (APS)
Citation
de Klerk, Niek J. J., et al. “Explaining Key Properties of Lithiation in TiO 2 -Anatase Li-Ion Battery Electrodes Using Phase-Field Modeling.” Physical Review Materials, vol. 1, no. 2, July 2017. © 2017 American Physical Society
Version: Final published version
ISSN
2475-9953

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.