Show simple item record

dc.contributor.authorCantarini, N.
dc.contributor.authorKac, Victor
dc.date.accessioned2018-05-24T15:58:35Z
dc.date.available2018-05-24T15:58:35Z
dc.date.issued2010-02
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttp://hdl.handle.net/1721.1/115845
dc.description.abstractThe notion of an anti-commutative (resp. commutative) rigid superalgebra is a natural generalization of the notion of a Lie (resp. Jordan) superalgebra. Intuitively, rigidity means that small deformations of the product under the action of the structural group produce an isomorphic algebra. In this paper, we classify all linearly compact simple anti-commutative (resp. commutative) rigid superalgebras. Beyond Lie (resp. Jordan) superalgebras, the complete list includes four series and 22 exceptional superalgebras (resp. 10 exceptional superalgebras).en_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/imrn/rnp231en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleClassification of Linearly Compact Simple Rigid Superalgebrasen_US
dc.typeArticleen_US
dc.identifier.citationCantarini, N. and V. G. Kac. “Classification of Linearly Compact Simple Rigid Superalgebras.” International Mathematics Research Notices 17 (February 2010): 3341–3393 © 2010 The Authoren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKac, Victor
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-24T12:45:29Z
dspace.orderedauthorsCantarini, N.; Kac, V. G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2860-7811
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record