Show simple item record

dc.contributor.authorOh, Sung-Jin
dc.contributor.authorShahshahani, Sohrab
dc.contributor.authorLawrie, Andrew W
dc.date.accessioned2018-05-24T17:16:47Z
dc.date.available2018-05-24T17:16:47Z
dc.date.issued2017
dc.identifier.issn1080-6377
dc.identifier.issn0002-9327
dc.identifier.urihttp://hdl.handle.net/1721.1/115852
dc.description.abstractIn this paper we initiate the study of equivariant wave maps from 2d hyperbolic space, H², into rotationally symmetric surfaces. This problem exhibits markedly different phenomena than its Euclidean counterpart due to the exponential volume growth of concentric geodesic spheres on the domain. In particular, when the target is S², we find a family of equivariant harmonic maps H²→ S², indexed by a parameter that measures how far the image of each harmonic map wraps around the sphere. These maps have energies taking all values between zero and the energy of the unique corotational Euclidean harmonic map, Q[subscript euc], from R² to S², given by stereographic projection. We prove that the harmonic maps are asymptotically stable for values of the parameter smaller than a threshold that is large enough to allow for maps that wrap more than halfway around the sphere. Indeed, we prove Strichartz estimates for the operator obtained by linearizing around such a harmonic map. However, for harmonic maps with energies approaching the Euclidean energy of Q[subscript euc], asymptotic stability via a perturbative argument based on Strichartz estimates is precluded by the existence of gap eigenvalues in the spectrum of the linearized operator. When the target is H², we find a continuous family of asymptotically stable equivariant harmonic maps H² → H² with arbitrarily small and arbitrarily large energies. This stands in sharp contrast to the corresponding problem on Euclidean space, where all finite energy solutions scatter to zero as time tends to infinity.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1302782)en_US
dc.publisherMuse - Johns Hopkins University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1353/AJM.2017.0028en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleStability of stationary equivariant wave maps from the hyperbolic planeen_US
dc.typeArticleen_US
dc.identifier.citationLawrie, Andrew et al. “Stability of Stationary Equivariant Wave Maps from the Hyperbolic Plane.” American Journal of Mathematics 139, 4 (2017): 1085–1147 © 2017 Johns Hopkins University Pressen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLawrie, Andrew W
dc.relation.journalAmerican Journal of Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-24T15:58:13Z
dspace.orderedauthorsLawrie, Andrew; Oh, Sung-Jin; Shahshahani, Sohraben_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9579-5760
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record