Show simple item record

dc.contributor.authorCôte, R.
dc.contributor.authorKenig, C. E.
dc.contributor.authorSchlag, W.
dc.contributor.authorLawrie, Andrew W
dc.date.accessioned2018-05-24T17:48:51Z
dc.date.available2018-05-24T17:48:51Z
dc.date.issued2017-12
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttp://hdl.handle.net/1721.1/115857
dc.description.abstractConsider a finite energy radial solution to the focusing energy critical semilinear wave equation in 1 + 4 dimensions. Assume that this solution exhibits type-II behavior, by which we mean that the critical Sobolev norm of the evolution stays bounded on the maximal interval of existence. We prove that along a sequence of times tending to the maximal forward time of existence, the solution decomposes into a sum of dynamically rescaled solitons, a free radiation term, and an error tending to zero in the energy space. If, in addition, we assume that the critical norm of the evolution localized to the light cone (the forward light cone in the case of global solutions and the backwards cone in the case of finite time blow-up) is less than 2 times the critical norm of the ground state solution W, then the decomposition holds without a restriction to a subsequence.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1302782)en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/S00220-017-3043-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleProfiles for the Radial Focusing 4d Energy-Critical Wave Equationen_US
dc.typeArticleen_US
dc.identifier.citationCôte, R. et al. “Profiles for the Radial Focusing 4d Energy-Critical Wave Equation.” Communications in Mathematical Physics 357, 3 (December 2017): 943–1008 © 2017 Springer-Verlagen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLawrie, Andrew W
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-24T15:52:45Z
dspace.orderedauthorsCôte, R.; Kenig, C. E.; Lawrie, A.; Schlag, W.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9579-5760
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record