Show simple item record

dc.contributor.authorvan der Valk, Dewy C.
dc.contributor.authorBlaser, Mark C.
dc.contributor.authorGrolman, Joshua M.
dc.contributor.authorWu, Pin-Jou
dc.contributor.authorLee, Lang H.
dc.contributor.authorWen, Jennifer R.
dc.contributor.authorHa, Anna H.
dc.contributor.authorBuffolo, Fabrizio
dc.contributor.authorvan Mil, Alain
dc.contributor.authorBouten, Carlijn V. C.
dc.contributor.authorBody, Simon C.
dc.contributor.authorMooney, David J.
dc.contributor.authorSluijter, Joost P. G.
dc.contributor.authorAikawa, Masanori
dc.contributor.authorHjortnaes, Jesper
dc.contributor.authorAikawa, Elena
dc.contributor.authorvan der Valk, Dewy
dc.contributor.authorvan der Ven, Casper
dc.contributor.authorBlaser, Mark
dc.contributor.authorGrolman, Joshua
dc.contributor.authorFenton, Owen
dc.contributor.authorLee, Lang
dc.contributor.authorTibbitt, Mark
dc.contributor.authorAndresen, Jason
dc.contributor.authorWen, Jennifer
dc.contributor.authorHa, Anna
dc.contributor.authorBouten, Carlijn
dc.contributor.authorBody, Simon
dc.contributor.authorMooney, David
dc.contributor.authorSluijter, Joost
dc.contributor.authorvan der Ven, Casper F.t.
dc.contributor.authorTibbitt, Mark W
dc.contributor.authorLanger, Robert S
dc.contributor.authorFenton, Owen Shea
dc.date.accessioned2018-05-24T18:02:58Z
dc.date.available2018-05-24T18:02:58Z
dc.date.issued2018-05
dc.date.submitted2018-04
dc.identifier.issn2079-4991
dc.identifier.urihttp://hdl.handle.net/1721.1/115860
dc.description.abstractIn calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.en_US
dc.publisherMDPI AGen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/nano8050296en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleEngineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanicsen_US
dc.typeArticleen_US
dc.identifier.citationvan der Valk, Dewy et al. "Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics." Nanomaterials 8, 5 (May 2018): 296 © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorvan der Ven, Casper F.t.
dc.contributor.mitauthorFenton, Owen S.
dc.contributor.mitauthorTibbitt, Mark W
dc.contributor.mitauthorAndresen, Jason
dc.contributor.mitauthorLanger, Robert S
dc.relation.journalNanomaterialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-24T15:16:32Z
dspace.orderedauthorsvan der Valk, Dewy; van der Ven, Casper; Blaser, Mark; Grolman, Joshua; Wu, Pin-Jou; Fenton, Owen; Lee, Lang; Tibbitt, Mark; Andresen, Jason; Wen, Jennifer; Ha, Anna; Buffolo, Fabrizio; van Mil, Alain; Bouten, Carlijn; Body, Simon; Mooney, David; Sluijter, Joost; Aikawa, Masanori; Hjortnaes, Jesper; Langer, Robert; Aikawa, Elenaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5585-9280
dc.identifier.orcidhttps://orcid.org/0000-0002-4917-7187
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record