Show simple item record

dc.contributor.authorZworski, Maciej
dc.contributor.authorDyatlov, Semen
dc.date.accessioned2018-05-24T19:08:39Z
dc.date.available2018-05-24T19:08:39Z
dc.date.issued2015-09
dc.date.submitted2015-07
dc.identifier.issn0951-7715
dc.identifier.issn1361-6544
dc.identifier.urihttp://hdl.handle.net/1721.1/115869
dc.description.abstractPollicott-Ruelle resonances for chaotic flows are the characteristic frequencies of correlations. They are typically defined as eigenvalues of the generator of the flow acting on specially designed functional spaces. We show that these resonances can be computed as viscosity limits of eigenvalues of second order elliptic operators. These eigenvalues are the characteristic frequencies of correlations for a stochastically perturbed flow.en_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0951-7715/28/10/3511en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleStochastic stability of Pollicott–Ruelle resonancesen_US
dc.typeArticleen_US
dc.identifier.citationDyatlov, Semyon and Maciej Zworski. “Stochastic Stability of Pollicott–Ruelle Resonances.” Nonlinearity 28, 10 (September 2015): 3511–3533 © 2015 IOP Publishing Ltd & London Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDyatlov, Semen
dc.relation.journalNonlinearityen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-18T17:27:16Z
dspace.orderedauthorsDyatlov, Semyon; Zworski, Maciejen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6594-7604
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record