Show simple item record

dc.contributor.authorGorin, Vadim
dc.contributor.authorKerov, Sergei
dc.contributor.authorVershik, Anatoly
dc.date.accessioned2018-05-24T20:24:10Z
dc.date.available2018-05-24T20:24:10Z
dc.date.issued2014-01
dc.date.submitted2013-06
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttp://hdl.handle.net/1721.1/115880
dc.description.abstractThe article is devoted to the representation theory of locally compact infinite-dimensional group GLB of almost upper-triangular infinite matrices over the finite field with q elements. This group was defined by S.K., A.V., and Andrei Zelevinsky in 1982 as an adequate n=∞ analogue of general linear groups GL(n,q). It serves as an alternative to GL(∞,q), whose representation theory is poor.Our most important results are the description of semifinite unipotent traces (characters) of the group GLB via certain probability measures on the Borel subgroup B and the construction of the corresponding von Neumann factor representations of type II ∞ .As a main tool we use the subalgebra A(GLB) of smooth functions in the group algebra L1(GLB). This subalgebra is an inductive limit of the finite-dimensional group algebras C(GL(n,q)) under parabolic embeddings.As in other examples of the asymptotic representation theory we discover remarkable properties of the infinite case which does not take place for finite groups, like multiplicativity of indecomposable characters or connections to probabilistic concepts.The infinite dimensional Iwahori-Hecke algebra Hq(∞) plays a special role in our conside rations and allows to understand the deep analogy of the developed theory with the representation theory of infinite symmetric group S(∞) which had been intensively studied in numerous previous papers. Keywords: Keywords Infinite-dimensional group; Finite field; Factor representation; Hecke algebraen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.AIM.2013.12.028en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleFinite traces and representations of the group of infinite matrices over a finite fielden_US
dc.typeArticleen_US
dc.identifier.citationGorin, Vadim et al. “Finite Traces and Representations of the Group of Infinite Matrices over a Finite Field.” Advances in Mathematics 254 (March 2014): 331–395 © 2013 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGorin, Vadim
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-22T14:05:35Z
dspace.orderedauthorsGorin, Vadim; Kerov, Sergei; Vershik, Anatolyen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9828-5862
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record