Show simple item record

dc.contributor.authorDyatlov, Semen
dc.date.accessioned2018-05-25T15:23:12Z
dc.date.available2018-05-25T15:23:12Z
dc.date.issued2016
dc.identifier.issn0373-0956
dc.identifier.issn1777-5310
dc.identifier.urihttp://hdl.handle.net/1721.1/115892
dc.description.abstractWe establish a resonance free strip for codimension 2 symplectic normally hyperbolic trapped sets with smooth incoming/outgoing tails. An important application is wave decay on Kerr and Kerr-de Sitter black holes. We recover the optimal size of the strip and give an o(h-2) resolvent bound there. We next show existence of deeper resonance free strips under the r-normal hyperbolicity assumption and a pinching condition. We also give a lower bound on the one-sided cutoff resolvent on the real line.en_US
dc.publisherCellule MathDoc/CEDRAMen_US
dc.relation.isversionofhttp://dx.doi.org/10.5802/AIF.3005en_US
dc.rightsC REATIVE C OMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 F RANCEen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nd/3.0/fr/en_US
dc.sourceAnnales de l’institut Fourieren_US
dc.titleSpectral gaps for normally hyperbolic trappingen_US
dc.title.alternativeTrous spectraux pour des ensembles captés normalement hyperboliquesen_US
dc.typeArticleen_US
dc.identifier.citationDyatlov, Semyon. “Spectral Gaps for Normally Hyperbolic Trapping.” Annales de L’institut Fourier 66, 1 (2016): 55–82 © 2016 Association des Annales de l'institut Fourieren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDyatlov, Semen
dc.relation.journalAnnales de l’institut Fourieren_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-18T17:16:30Z
dspace.orderedauthorsDyatlov, Semyonen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6594-7604
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record