Show simple item record

dc.contributor.authorDiakonikolas, Ilias
dc.contributor.authorKane, Daniel M.
dc.contributor.authorStewart, Alistair
dc.contributor.authorKamath, Gautam Chetan
dc.contributor.authorLi, Jerry Zheng
dc.contributor.authorMoitra, Ankur
dc.date.accessioned2018-05-29T17:40:35Z
dc.date.available2018-05-29T17:40:35Z
dc.date.issued2016-12
dc.date.submitted2016-10
dc.identifier.isbn978-1-5090-3933-3
dc.identifier.urihttp://hdl.handle.net/1721.1/115939
dc.description.abstractWe study high-dimensional distribution learning in an agnostic setting where an adversary is allowed to arbitrarily corrupt an epsilon fraction of the samples. Such questions have a rich history spanning statistics, machine learning and theoretical computer science. Even in the most basic settings, the only known approaches are either computationally inefficient or lose dimension dependent factors in their error guarantees. This raises the following question: Is high-dimensional agnostic distribution learning even possible, algorithmically? In this work, we obtain the first computationally efficient algorithms for agnostically learning several fundamental classes of high-dimensional distributions: (1) a single Gaussian, (2) a product distribution on the hypercube, (3) mixtures of two product distributions (under a natural balancedness condition), and (4) mixtures of k Gaussians with identical spherical covariances. All our algorithms achieve error that is independent of the dimension, and in many cases depends nearly-linearly on the fraction of adversarially corrupted samples. Moreover, we develop a general recipe for detecting and correcting corruptions in high-dimensions, that may be applicable to many other problems.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-12-1-0999)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award CCF-1453261)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award CCF-0953960)en_US
dc.description.sponsorshipGoogle (Firm) (Faculty Research Award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.description.sponsorshipNEC Corporationen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/FOCS.2016.85en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleRobust Estimators in High Dimensions without the Computational Intractabilityen_US
dc.typeArticleen_US
dc.identifier.citationDiakonikolas, Ilias, et al. "Robust Estimators in High Dimensions without the Computational Intractability." 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 9-11 October, New Brunswick, New Jersey, 2016, IEEE, 2016, pp. 655–64.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKamath, Gautam Chetan
dc.contributor.mitauthorLi, Jerry Zheng
dc.contributor.mitauthorMoitra, Ankur
dc.relation.journal2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-29T14:28:46Z
dspace.orderedauthorsDiakonikolas, Ilias; Kamath, Gautam; Kane, Daniel M.; Li, Jerry; Moitra, Ankur; Stewart, Alistairen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0048-2559
dc.identifier.orcidhttps://orcid.org/0000-0002-9937-0049
dc.identifier.orcidhttps://orcid.org/0000-0001-7047-0495
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record