Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2018-05-29T18:43:25Z
dc.date.available2018-05-29T18:43:25Z
dc.date.issued2017-03
dc.date.submitted2017-07
dc.identifier.issn2304-7909
dc.identifier.urihttp://hdl.handle.net/1721.1/115947
dc.description.abstractLet G be a connected reductive group defined over a finite field F[subscript q]. We give a parametrization of the irreducible representations of G(Fq) in terms of (twisted) categorical centres of various monoidal categories associated to G. Results of this type were known earlier for unipotent representations and also for character sheavesen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-1566618)en_US
dc.publisherInstitute of Mathematics, Academia Sinicaen_US
dc.relation.isversionofhttp://dx.doi.org/10.21915/BIMAS.2017301en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.subjectReductive group, flag manifold, irred ucible representation, categorical centreen_US
dc.titleNon-Unipotent Representations and Categorical Centersen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, George. “Non-Unipotent Representations and Categorical Centers.” Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES 12, no. 3 (September 1, 2017).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLusztig, George
dc.relation.journalBulletin of the Institute of Mathematics Academia Sinica NEW SERIESen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-24T17:22:40Z
dspace.orderedauthorsLusztig, Georgeen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9414-6892
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record