MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrability of Dirac Reduced Bi-Hamiltonian Equations

Author(s)
De Sole, Alberto; Valeri, Daniele; Kac, Victor
Thumbnail
Download1401.6006.pdf (252.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
First, we give a brief review of the theory of the Lenard-Magri scheme for a non-local bi-Poisson structure and of the theory of Dirac reduction. These theories are used in the remainder of the paper to prove integrability of three hierarchies of bi-Hamiltonian PDE’s, obtained by Dirac reduction from some generalized Drinfeld-Sokolov hierarchies.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/115965
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Trends in Contemporary Mathematics
Publisher
Springer International Publishing AG
Citation
De Sole, Alberto, et al. “Integrability of Dirac Reduced Bi-Hamiltonian Equations.” Trends in Contemporary Mathematics, edited by Vincenzo Ancona and Elisabetta Strickland, vol. 8, Springer International Publishing, 2014, pp. 13–32.
Version: Author's final manuscript
ISBN
978-3-319-05253-3
978-3-319-05254-0
ISSN
2281-518X
2281-5198

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.