MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extrapolated full-waveform inversion: An image-space approach

Author(s)
Li, Yunyue; Demanet, Laurent
Thumbnail
DownloadISEFWI-seg.pdf (775.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The primary factor that prevents full waveform inversion from universal success is the band-limited nature of seismic data, resulting in a gap between the low wavenumber background velocity model and the high wavenumber seismic images. In this paper, we propose to bridge the wavenumber gap in the extended image space, where full kinematic information in the data is preserved in spite of the inaccuracy of the background migration velocity model, and where the wavenumber range of the extended image is extrapolated using total-variation constrained deconvolution. This explicit wavenumber extrapolation is nested within least-squares reverse time migration iterations to ensure that the resulting extended images match the recorded band-limited data. We then synthesize reflection data using extended Born modeling with the extrapolated images. Numerical experiments show that although the total variation projection has limited the high frequencies that can be recreated by extended Born modeling, the low frequencies are reliably extrapolated at all offsets, given a reasonable starting velocity model. When the initial model is too crude, the proposed frequency extrapolation breaks down near the complex structures. Keywords: data reconstruction; deconvolution; full-waveform inversion; least-squares migration
Date issued
2017-08
URI
http://hdl.handle.net/1721.1/115966
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Mathematics
Journal
SEG Technical Program Expanded Abstracts 2017
Publisher
Society of Exploration Geophysicists
Citation
Li, Yunyue and Laurent Demanet. “Extrapolated Full-Waveform Inversion: An Image-Space Approach.” SEG Technical Program Expanded Abstracts 2017 (August 2017): 1682-1686
Version: Author's final manuscript
ISSN
1949-4645

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.