MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Safe Visual Navigation via Deep Learning and Novelty Detection

Author(s)
Richter, Charles Andrew; Roy, Nicholas
Thumbnail
Downloadp64.pdf (3.430Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Robots that use learned perceptual models in the real world must be able to safely handle cases where they are forced to make decisions in scenarios that are unlike any of their training examples. However, state-of-the-art deep learning methods are known to produce erratic or unsafe predictions when faced with novel inputs. Furthermore, recent ensemble, bootstrap and dropout methods for quantifying neural network uncertainty may not efficiently provide accurate uncertainty estimates when queried with inputs that are very different from their training data. Rather than unconditionally trusting the predictions of a neural network for unpredictable real-world data, we use an autoencoder to recognize when a query is novel, and revert to a safe prior behavior. With this capability, we can deploy an autonomous deep learning system in arbitrary environments, without concern for whether it has received the appropriate training. We demonstrate our method with a vision-guided robot that can leverage its deep neural network to navigate 50% faster than a safe baseline policy in familiar types of environments, while reverting to the prior behavior in novel environments so that it can safely collect additional training data and continually improve. A video illustrating our approach is available at: http://groups.csail.mit.edu/rrg/videos/safe visual navigation.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/115978
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Robotics: Science and Systems XIII
Publisher
Robotics: Science and Systems Foundation
Citation
Richter, Charles, and Nicholas Roy. “Safe Visual Navigation via Deep Learning and Novelty Detection.” Robotics: Science and Systems XIII (July 12, 2017).
Version: Author's final manuscript
ISBN
978-0-9923747-3-0

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.