## A regime of linear stability for the Einstein-scalar field system with applications to nonlinear Big Bang formation

##### Author(s)

Rodnianski, Igor; Speck, Jared R.
Download1407.6293.pdf (1016.Kb)

OPEN_ACCESS_POLICY

# Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

##### Terms of use

##### Metadata

Show full item record##### Abstract

We linearize the Einstein-scalar field equations, expressed relative to constant mean curvature (CMC)-transported spatial coordinates gauge, around members of the well-known family of Kasner solutions on (0;∞) × T[superscript 3]. The Kasner solutions model a spatially uniform scalar field evolving in a (typically) spatially anisotropic spacetime that expands towards the future and that has a "Big Bang" singularity at (t = 0). We place initial data for the linearized system along (t = 1) ≃ T[superscript 3] and study the linear solution's behavior in the collapsing direction t ↓ 0. Our first main result is the proof of an approximate L[superscript 2] monotonicity identity for the linear solutions. Using it, we prove a linear stability result that holds when the background Kasner solution is sufficiently close to the Friedmann-Lemaĭtre-Robertson-Walker (FLRW) solution. In particular, we show that as t ↓ 0, various time- rescaled components of the linear solution converge to regular functions defined along (t = 0). In addition, we motivate the preferred direction of the approximate monotonicity by showing that the CMC-transported spatial coordinates gauge can be viewed as a limiting version of a family of parabolic gauges for the lapse variable; an approximate monotonicity identity and corresponding linear stability results also hold in the para-bolic gauges, but the corresponding parabolic PDEs are locally well posed only in the direction t ↓ 0. Finally, based on the linear stability results, we outline a proof of the following result, whose complete proof will appear elsewhere: the FLRW solution is globally nonlinearly stable in the collapsing direction t↓ 0 under small perturbations of its data at (t = 1). Keywords: BKL conjectures, constant mean curvature, FLRW, Kasner solution, monotonicity, parabolic gauge, quiescent cosmology, spatial harmonic coordinates, stable blowup, strong cosmic censorship, transported spatial coordinates

##### Date issued

2017-12##### Department

Massachusetts Institute of Technology. Department of Mathematics##### Journal

Annals of Mathematics

##### Publisher

Princeton University Press

##### Citation

Rodnianski, Igor, and Jared Speck. “A Regime of Linear Stability for the Einstein-Scalar Field System with Applications to Nonlinear Big Bang Formation.” Annals of Mathematics, vol. 187, no. 1, Jan. 2018, pp. 65–156.

Version: Author's final manuscript

##### ISSN

0003-486X