Show simple item record

dc.contributor.authorKalman, Tamas
dc.contributor.authorPostnikov, Alexander
dc.date.accessioned2018-05-30T18:48:50Z
dc.date.available2018-05-30T18:48:50Z
dc.date.issued2017-01
dc.date.submitted2016-08
dc.identifier.issn0024-6115
dc.identifier.issn1234-5678
dc.identifier.urihttp://hdl.handle.net/1721.1/115992
dc.description.abstractLet G be a connected bipartite graph with colour classes E and V and root polytope Q. Regarding the hypergraph H=(V,E) induced by G, we prove that the interior polynomial of H is equivalent to the Ehrhart polynomial of Q, which in turn is equivalent to the h-vector of any triangulation of Q. It follows that the interior polynomials of H and its transpose H=(E,V) agree. When G is a complete bipartite graph, our result recovers a well-known hypergeometric identity due to Saalschütz. It also implies that certain extremal coefficients in the Homfly polynomial of a special alternating link can be read off of an associated Floer homology group.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS‐1100147)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS‐1362336)en_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/PLMS.12015en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleRoot polytopes, Tutte polynomials, and a duality theorem for bipartite graphsen_US
dc.typeArticleen_US
dc.identifier.citationKálmán, Tamás and Alexander Postnikov. “Root Polytopes, Tutte Polynomials, and a Duality Theorem for Bipartite Graphs.” Proceedings of the London Mathematical Society 114, 3 (January 2017): 561–588 © 2017 London Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKalman, Tamas
dc.contributor.mitauthorPostnikov, Alexander
dc.relation.journalProceedings of the London Mathematical Societyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-29T18:23:09Z
dspace.orderedauthorsKálmán, Tamás; Postnikov, Alexanderen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3964-8870
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record