dc.contributor.author | Kalman, Tamas | |
dc.contributor.author | Postnikov, Alexander | |
dc.date.accessioned | 2018-05-30T18:48:50Z | |
dc.date.available | 2018-05-30T18:48:50Z | |
dc.date.issued | 2017-01 | |
dc.date.submitted | 2016-08 | |
dc.identifier.issn | 0024-6115 | |
dc.identifier.issn | 1234-5678 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/115992 | |
dc.description.abstract | Let G be a connected bipartite graph with colour classes E and V and root polytope Q. Regarding the hypergraph H=(V,E) induced by G, we prove that the interior polynomial of H is equivalent to the Ehrhart polynomial of Q, which in turn is equivalent to the h-vector of any triangulation of Q. It follows that the interior polynomials of H and its transpose H=(E,V) agree. When G is a complete bipartite graph, our result recovers a well-known hypergeometric identity due to Saalschütz. It also implies that certain extremal coefficients in the Homfly polynomial of a special alternating link can be read off of an associated Floer homology group. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS‐1100147) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS‐1362336) | en_US |
dc.publisher | Oxford University Press (OUP) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1112/PLMS.12015 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Root polytopes, Tutte polynomials, and a duality theorem for bipartite graphs | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Kálmán, Tamás and Alexander Postnikov. “Root Polytopes, Tutte Polynomials, and a Duality Theorem for Bipartite Graphs.” Proceedings of the London Mathematical Society 114, 3 (January 2017): 561–588 © 2017 London Mathematical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Kalman, Tamas | |
dc.contributor.mitauthor | Postnikov, Alexander | |
dc.relation.journal | Proceedings of the London Mathematical Society | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2018-05-29T18:23:09Z | |
dspace.orderedauthors | Kálmán, Tamás; Postnikov, Alexander | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-3964-8870 | |
mit.license | OPEN_ACCESS_POLICY | en_US |