Show simple item record

dc.contributor.authorEdelman, Alan
dc.contributor.authorKoev, Plamen S
dc.date.accessioned2018-05-31T12:25:28Z
dc.date.available2018-05-31T12:25:28Z
dc.date.issued2014-05
dc.date.submitted2013-11
dc.identifier.issn2010-3263
dc.identifier.issn2010-3271
dc.identifier.urihttp://hdl.handle.net/1721.1/116006
dc.description.abstractWe derive explicit expressions for the distributions of the extreme eigenvalues of the Beta-Wishart random matrices in terms of the hypergeometric function of a matrix argument. These results generalize the classical results for the real (β = 1), complex (β = 2), and quaternion (β = 4) Wishart matrices to any β > 0.en_US
dc.publisherWorld Scientific Pub Co Pte Lten_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S2010326314500099en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.subjectWishart matrix; eigenvalue; hypergeometric function of a matrix argumenten_US
dc.titleEigenvalue distributions of beta-Wishart matricesen_US
dc.typeArticleen_US
dc.identifier.citationEdelman, Alan, and Plamen Koev. “Eigenvalue Distributions of Beta-Wishart Matrices.” Random Matrices: Theory and Applications 03, no. 02 (April 2014): 1450009.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEdelman, Alan
dc.contributor.mitauthorKoev, Plamen S
dc.relation.journalRandom Matrices: Theory and Applicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-21T12:52:33Z
dspace.orderedauthorsEdelman, Alan; Koev, Plamenen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7676-3133
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record