MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finiteness of K3 surfaces and the Tate conjecture

Author(s)
Lieblich, Max; Maulik, Davesh; Snowden, Andrew WIlson
Thumbnail
Download1107.1221.pdf (256.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Given a finite field k of characteristic p ≥ 5, we show that the Tate conjecture holds for K3 surfaces defined over each finite extension of k.
Date issued
2018-05-31
URI
http://hdl.handle.net/1721.1/116009
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annales scientifiques de l'École normale supérieure
Publisher
Societe Mathematique de France
Citation
Lieblich, Max, Davesh Maulik, and Andrew Snowden. “Finiteness of K3 Surfaces and the Tate Conjecture.” Annales Scientifiques de l’École Normale Supérieure 47, no. 2 (2014): 285–308.
Version: Original manuscript
ISSN
0012-9593
1873-2151
Keywords
Tate conjecture, twisted sheaves, K3 surfaces, Fourier-Mukai equivalence

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.