Show simple item record

dc.contributor.authorShen, Huitao
dc.contributor.authorLiu, Junwei
dc.contributor.authorFu, Liang
dc.date.accessioned2018-05-31T13:39:02Z
dc.date.available2018-05-31T13:39:02Z
dc.date.issued2018-05
dc.date.submitted2018-05
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/116011
dc.description.abstractThe self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O(β²) in Hirsch-Fye algorithm to O(βlnβ), which is a significant speedup especially for systems at low temperatures.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0010526)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.97.205140en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleSelf-learning Monte Carlo with deep neural networksen_US
dc.typeArticleen_US
dc.identifier.citationShen, Huitao et al. "Self-learning Monte Carlo with deep neural networks." Physical Review B 97, 20 (May 2018): 205140 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorShen, Huitao
dc.contributor.mitauthorLiu, Junwei
dc.contributor.mitauthorFu, Liang
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-29T18:00:23Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsShen, Huitao; Liu, Junwei; Fu, Liangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1667-8011
dc.identifier.orcidhttps://orcid.org/0000-0001-8051-7349
dc.identifier.orcidhttps://orcid.org/0000-0002-8803-1017
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record