Show simple item record

dc.contributor.authorMaltez Faria, Luiz
dc.contributor.authorRosales, Rodolfo
dc.date.accessioned2018-05-31T13:59:12Z
dc.date.available2018-05-31T13:59:12Z
dc.date.issued2017-06
dc.identifier.issn0022-2526
dc.identifier.issn1467-9590
dc.identifier.urihttp://hdl.handle.net/1721.1/116015
dc.description.abstractA Wiley Company We introduce an alternative to the method of matched asymptotic expansions. In the “traditional” implementation, approximate solutions, valid in different (but overlapping) regions, are matched by using “intermediate” variables. Here we propose to match at the level of the equations involved, via a “uniform expansion” whose equations enfold those of the approximations to be matched. This has the advantage that one does not need to explicitly solve the asymptotic equations to do the matching, which can be quite impossible for some problems. In addition, it allows matching to proceed in certain wave situations where the traditional approach fails because the time behaviors differ (e.g., one of the expansions does not include dissipation). On the other hand, this approach does not provide the fairly explicit approximations resulting from standard matching. In fact, this is not even its aim, which is to produce the “simplest” set of equations that capture the behavior.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1318942)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1614043)en_US
dc.publisherWiley-Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1111/SAPM.12183en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleEquation Level Matching: An Extension of the Method of Matched Asymptotic Expansion for Problems of Wave Propagationen_US
dc.typeArticleen_US
dc.identifier.citationFaria, L. M. and R. R. Rosales. “Equation Level Matching: An Extension of the Method of Matched Asymptotic Expansion for Problems of Wave Propagation.” Studies in Applied Mathematics 139, 2 (June 2017): 265–287 © 2017 Wiley Periodicals, Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMaltez Faria, Luiz
dc.contributor.mitauthorRosales, Rodolfo
dc.relation.journalStudies in Applied Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-30T13:34:41Z
dspace.orderedauthorsFaria, L. M.; Rosales, R. R.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8129-2548
dc.identifier.orcidhttps://orcid.org/0000-0002-8828-5930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record