Show simple item record

dc.contributor.authorZhou, Dong
dc.contributor.authorSeibold, Benjamin
dc.contributor.authorShirokoff, David
dc.contributor.authorChidyagwai, Prince
dc.contributor.authorRosales, Rodolfo
dc.date.accessioned2018-05-31T14:06:26Z
dc.date.available2018-05-31T14:06:26Z
dc.date.issued2015
dc.identifier.isbn978-3-319-06897-8
dc.identifier.isbn978-3-319-06898-5
dc.identifier.issn1439-7358
dc.identifier.issn2197-7100
dc.identifier.urihttp://hdl.handle.net/1721.1/116017
dc.description.abstractWe demonstrate how meshfree finite difference methods can be applied to solve vector Poisson problems with electric boundary conditions. In these, the tangential velocity and the incompressibility of the vector field are prescribed at the boundary. Even on irregular domains with only convex corners, canonical nodalbased finite elements may converge to the wrong solution due to a version of the Babuška paradox. In turn, straightforward meshfree finite differences converge to the true solution, and even high-order accuracy can be achieved in a simple fashion. The methodology is then extended to a specific pressure Poisson equation reformulation of the Navier-Stokes equations that possesses the same type of boundary conditions. The resulting numerical approach is second order accurate and allows for a simple switching between an explicit and implicit treatment of the viscosity terms. Keywords: Meshfree Finite-differences; Navier-Stokes; Incompressible; Vector Poisson equation; Pressure Poisson equation; Reformulation; Manufactured solution; High-orderen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS–1318942)en_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-06898-5_12en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMeshfree Finite Differences for Vector Poisson and Pressure Poisson Equations with Electric Boundary Conditionsen_US
dc.typeArticleen_US
dc.identifier.citationZhou, Dong et al. “Meshfree Finite Differences for Vector Poisson and Pressure Poisson Equations with Electric Boundary Conditions.” Meshfree Methods for Partial Differential Equations VII (November 2014): 223–246 © 2015 Springer International Publishing Switzerlanden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorRosales, Rodolfo
dc.relation.journalMeshfree Methods for Partial Differential Equations VIIen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-30T13:53:11Z
dspace.orderedauthorsZhou, Dong; Seibold, Benjamin; Shirokoff, David; Chidyagwai, Prince; Rosales, Rodolfo Rubenen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8828-5930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record