MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite-time degeneration of hyperbolicity without blowup for quasilinear wave equations

Author(s)
Speck, Jared R.
Thumbnail
Download1610.00821.pdf (495.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In three spatial dimensions, we study the Cauchy problem for the wave equation −∂[superscript 2][subscript t]Ψ + (1+Ψ)[superscript P] ΔΨ=0 for P∈{1,2}. We exhibit a form of stable Tricomi-type degeneracy formation that has not previously been studied in more than one spatial dimension. Specifically, using only energy methods and ODE techniques, we exhibit an open set of data such that Ψ is initially near 0, while 1+Ψ vanishes in finite time. In fact, generic data, when appropriately rescaled, lead to this phenomenon. The solution remains regular in the following sense: there is a high-order L[superscript 2]-type energy, featuring degenerate weights only at the top-order, that remains bounded. When P = 1, we show that any C[superscript 1] extension of Ψ to the future of a point where 1 + Ψ = 0 must exit the regime of hyperbolicity. Moreover, the Kretschmann scalar of the Lorentzian metric corresponding to the wave equation blows up at those points. Thus, our results show that curvature blowup does not always coincide with singularity formation in the solution variable. Similar phenomena occur when P = 2, where the vanishing of 1 + Ψ corresponds to the failure of strict hyperbolicity, although the equation is hyperbolic at all values of Ψ. The data are compactly supported and are allowed to be large or small as measured by an unweighted Sobolev norm. However, we assume that initially the spatial derivatives of Ψ are nonlinearly small relative to |∂[subscript t]Ψ|, which allows us to treat the equation as a perturbation of the ODE (d[superscript 2]/dt[superscript 2])Ψ = 0. We show that for appropriate data, ∂tΨ remains quantitatively negative, which simultaneously drives the degeneracy formation and yields a favorable spacetime integral in the energy estimates that is crucial for controlling some top-order error terms. Our result complements those of Alinhac and Lindblad, who showed that if the data are small as measured by a Sobolev norm with radial weights, then the solution is global. Keywords: degenerate hyperbolic; strictly hyperbolic; Tricomi equation; weakly hyperbolic
Date issued
2017-08
URI
http://hdl.handle.net/1721.1/116021
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Analysis & PDE
Publisher
Mathematical Sciences Publishers
Citation
Speck, Jared. “Finite-Time Degeneration of Hyperbolicity Without Blowup for Quasilinear Wave Equations.” Analysis & PDE 10, 8 (August 2017): 2001–2030
Version: Author's final manuscript
ISSN
1948-206X
2157-5045

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.