dc.contributor.author | Shen, Ruipeng | |
dc.contributor.author | Staffilani, Gigliola | |
dc.date.accessioned | 2018-05-31T17:32:07Z | |
dc.date.available | 2018-05-31T17:32:07Z | |
dc.date.issued | 2015-03 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.issn | 1088-6850 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116024 | |
dc.description.abstract | In this paper we consider a semi-linear, defocusing, shifted wave equation on the hyperbolic space ∂[subscript t][superscript 2]u- (∆ℍ[superscript n] +ρ[superscript 2] )u = -|u| p[superscript -1] u, (x,t) ∈ ℍ n × ℝ, and we introduce a Morawetz-type inequality (Formula presented) where ε is the energy. Combining this inequality with a well-posedness theory, we can establish a scattering result for solutions with initial data in H[superscript 1/2,1/2] × H[superscript 1/2,−1/2](ℍ[superscript n) if 2 ≤ n ≤ 6 and 1 < p < p[subscript c] = 1+4/(n − 2). As another application we show that a solution to the quintic wave equation ∂[subscript t][superscript 2]u − Δu = −|u|[superscript 4] u on ℝ[superscript 2] scatters if its initial data are radial and satisfy the conditions |∇u[subscript 0](x)|, |u[subscript 1](x)| ≤ A(|x| + 1) [superscript −3/2−ε] , |u[subscript 0](x)| ≤ A(|x|)[superscript −1/2−ε], ε > 0. | en_US |
dc.publisher | American Mathematical Society (AMS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/S0002-9947-2015-06513-1 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Mathematical Society | en_US |
dc.title | A semi-linear shifted wave equation on the hyperbolic spaces with application on a quintic wave equation on R² | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Shen, Ruipeng and Gigliola Staffilani. “A semi-linear shifted wave equation on the hyperbolic spaces with application on a quintic wave equation on R².” Transactions of the American Mathematical Society 368, 4 (March 2015): 2809–2864 © 2015 American Mathematical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Shen, Ruipeng | |
dc.contributor.mitauthor | Staffilani, Gigliola | |
dc.relation.journal | Transactions of the American Mathematical Society | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-05-30T17:20:51Z | |
dspace.orderedauthors | Shen, Ruipeng; Staffilani, Gigliola | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-8220-4466 | |
mit.license | PUBLISHER_POLICY | en_US |