Show simple item record

dc.contributor.authorGoemans, Michel X
dc.contributor.authorUnda, Francisco Tomas
dc.date.accessioned2018-06-04T16:41:26Z
dc.date.available2018-06-04T16:41:26Z
dc.date.issued2017-08
dc.identifier.isbn9783959770446
dc.identifier.urihttp://hdl.handle.net/1721.1/116057
dc.description.abstractWe consider incremental combinatorial optimization problems, in which a solution is constructed incrementally over time, and the goal is to optimize not the value of the final solution but the average value over all timesteps. We consider a natural algorithm of moving towards a global optimum solution as quickly as possible. We show that this algorithm provides an approximation guarantee of (9 + √21)/15 > 0.9 for a large class of incremental combinatorial optimization problems defined axiomatically, which includes (bipartite and non-bipartite) matchings, matroid intersections, and stable sets in claw-free graphs. Furthermore, our analysis is tight.en_US
dc.publisherSchloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.6en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceOther repositoryen_US
dc.subjectApproximation algorithm, matching, incremental problems, matroid intersection, integral polytopes, stable setsen_US
dc.titleApproximating incremental combinatorial optimization problemsen_US
dc.typeArticleen_US
dc.identifier.citationMichel X. Goemans and Francisco Unda. "Approximating incremental combinatorial optimization problems." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017), Article No. 6; pp. 6:1–6:14.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorGoemans, Michel X
dc.contributor.mitauthorUnda, Francisco Tomas
dc.relation.journalApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN- DOM 2017)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-21T18:55:30Z
dspace.orderedauthorsGoemans, Michel X. ; Unda, Franciscoen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0520-1165
dc.identifier.orcidhttps://orcid.org/0000-0002-3975-9714
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record