| dc.contributor.author | Goemans, Michel X | |
| dc.contributor.author | Unda, Francisco Tomas | |
| dc.date.accessioned | 2018-06-04T16:41:26Z | |
| dc.date.available | 2018-06-04T16:41:26Z | |
| dc.date.issued | 2017-08 | |
| dc.identifier.isbn | 9783959770446 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/116057 | |
| dc.description.abstract | We consider incremental combinatorial optimization problems, in which a solution is constructed incrementally over time, and the goal is to optimize not the value of the final solution but the average value over all timesteps. We consider a natural algorithm of moving towards a global optimum solution as quickly as possible. We show that this algorithm provides an approximation guarantee of (9 + √21)/15 > 0.9 for a large class of incremental combinatorial optimization problems defined axiomatically, which includes (bipartite and non-bipartite) matchings, matroid intersections, and stable sets in claw-free graphs. Furthermore, our analysis is tight. | en_US |
| dc.publisher | Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.6 | en_US |
| dc.rights | Creative Commons Attribution 4.0 International License | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US |
| dc.source | Other repository | en_US |
| dc.subject | Approximation algorithm, matching, incremental problems, matroid intersection, integral polytopes, stable sets | en_US |
| dc.title | Approximating incremental combinatorial optimization problems | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Michel X. Goemans and Francisco Unda. "Approximating incremental combinatorial optimization problems." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017), Article No. 6; pp. 6:1–6:14. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.department | Sloan School of Management | en_US |
| dc.contributor.mitauthor | Goemans, Michel X | |
| dc.contributor.mitauthor | Unda, Francisco Tomas | |
| dc.relation.journal | Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN- DOM 2017) | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dc.date.updated | 2018-05-21T18:55:30Z | |
| dspace.orderedauthors | Goemans, Michel X. ; Unda, Francisco | en_US |
| dspace.embargo.terms | N | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0002-0520-1165 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-3975-9714 | |
| mit.license | PUBLISHER_CC | en_US |