Show simple item record

dc.contributor.authorShah, Devavrat
dc.contributor.authorChen, George
dc.contributor.authorGolland, Polina
dc.date.accessioned2018-06-05T13:40:02Z
dc.date.available2018-06-05T13:40:02Z
dc.date.issued2015-11
dc.identifier.isbn978-3-319-24573-7
dc.identifier.isbn978-3-319-24574-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/116080
dc.description.abstractDespite the popularity and empirical success of patch-based nearest-neighbor and weighted majority voting approaches to medical image segmentation, there has been no theoretical development on when, why, and how well these nonparametric methods work. We bridge this gap by providing a theoretical performance guarantee for nearest-neighbor and weighted majority voting segmentation under a new probabilistic model for patch-based image segmentation. Our analysis relies on a new local property for how similar nearby patches are, and fuses existing lines of work on modeling natural imagery patches and theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm. Keywords: Mixture Model, Image Segmentation, Gaussian Mixture Model, Image Patch, Label Imageen_US
dc.description.sponsorshipNeuroimaging Analysis Center (U.S.) (Grant P41EB015902)en_US
dc.description.sponsorshipLincoln Laboratoryen_US
dc.description.sponsorshipWistron Corporationen_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.language.isoen_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-24574-4_17en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleA Latent Source Model for Patch-Based Image Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationChen, George H., et al. “A Latent Source Model for Patch-Based Image Segmentation.” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 5-9 October, 2015, Munich, Germany, edited by Nassir Navab et al., vol. 9351, Springer International Publishing, 2015, pp. 140–48.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorShah, Devavrat
dc.contributor.mitauthorChen, George
dc.contributor.mitauthorGolland, Polina
dc.relation.journalMedical Image Computing and Computer-Assisted Intervention – MICCAI 2015en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsChen, George H.; Shah, Devavrat; Golland, Polinaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0737-3259
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record