Show simple item record

dc.contributor.authorWillcox, Karen E
dc.contributor.authorMainini, Laura
dc.date.accessioned2018-06-05T13:58:08Z
dc.date.available2018-06-05T13:58:08Z
dc.date.issued2017-06
dc.identifier.isbn978-1-62410-507-4
dc.identifier.urihttp://hdl.handle.net/1721.1/116083
dc.description.abstractThis paper introduces a computational strategy to determine optimal sets of sensor locations to support real-time operational decisions. We exploit unsupervised learning strategies (specifically self-organizing maps) to identify the most informative locations to place sensors. The sensor placement procedure is then combined with a Multi-Step-Reduced Order Modeling approach that exploits the low-dimensional map between the sparse sensed data and the decisions at hand. The approach is demonstrated for the real-time assessment of an unmanned aircraft wing panel undergoing structural degradation. For this application, we compare the optimal sets of sensor locations with random placements for a variety of sensor availabilities. By adopting our placement strategy, we achieve improvements in accuracy and robustness of capability predictions, even when measured data are sparse and cover less than 10% of the reference data.en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (Grant FA9550-16-1-0108)en_US
dc.description.sponsorshipSUTD-MIT International Design Centre (IDC)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Aeronautics and Astronauticsen_US
dc.relation.isversionofhttps://doi.org/10.2514/6.2017-3820en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Willcox via Barbara Williamsen_US
dc.titleSensor placement strategy to inform decisionsen_US
dc.typeArticleen_US
dc.identifier.citationMainini, Laura, and Karen E. Willcox. "Sensor Placement Strategy to Inform Decisions." 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 5-9 June, 2017, Denver, Colorado, American Institute of Aeronautics and Astronautics, 2017.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.approverWillcox, Karen E.en_US
dc.contributor.mitauthorWillcox, Karen E
dc.contributor.mitauthorMainini, Laura
dc.relation.journal18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMainini, Laura; Willcox, Karen E.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
dc.identifier.orcidhttps://orcid.org/0000-0002-5969-9069
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record