dc.contributor.author | Zepeda Nunez, Leonardo Andres | |
dc.contributor.author | Demanet, Laurent | |
dc.date.accessioned | 2018-06-05T14:32:15Z | |
dc.date.available | 2018-06-05T14:32:15Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1949-4645 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116088 | |
dc.description.abstract | We present a variant of the solver in Zepeda-Núñez and Demanet (2014), for the 2D high-frequency Helmholtz equation in heterogeneous acoustic media. By changing the domain decomposition from a layered to a grid-like partition, this variant yields improved asymptotic online and offline runtimes and a lower memory footprint. The solver has online parallel complexity that scales sublinearly as θ(N/P), where N is the number of volume unknowns, and P is the number of processors, provided that P = θ(N[superscript 1/5]). The variant in Zepeda-Núñez and Demanet (2014) only afforded P = θ(N[superscript 1/5]). Algorithmic scalability is a prime requirement for wave simulation in regimes of interest for geophysical imaging. Keywords: frequency-domain, finite difference, modeling, wave equation, numerical | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) | en_US |
dc.description.sponsorship | United States. Office of Naval Research | en_US |
dc.description.sponsorship | United States. Air Force. Office of Scientific Research | en_US |
dc.publisher | Society of Exploration Geophysicists | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1190/SEGAM2015-5838886.1 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT Web Domain | en_US |
dc.title | A short note on the nested-sweep polarized traces method for the 2D Helmholtz equation | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Zepeda-Núñez, Leonardo, and Laurent Demanet. "A Short Note on the Nested-Sweep Polarized Traces Method for the 2D Helmholtz Equation." SEG Technical Program Expanded Abstracts, 2015, pp. 3682–87. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Zepeda Nunez, Leonardo Andres | |
dc.contributor.mitauthor | Demanet, Laurent | |
dc.relation.journal | SEG Technical Program Expanded Abstracts 2015 | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2018-05-17T17:35:08Z | |
dspace.orderedauthors | Zepeda-Núñez, Leonardo; Demanet, Laurent | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-7052-5097 | |
mit.license | OPEN_ACCESS_POLICY | en_US |