Show simple item record

dc.contributor.authorMehdi, Salah
dc.contributor.authorPandzic, Pavle
dc.contributor.authorVogan, David A
dc.date.accessioned2018-06-05T15:00:48Z
dc.date.available2018-06-05T15:00:48Z
dc.date.issued2017-12
dc.date.submitted2016-04
dc.identifier.issn1080-6377
dc.identifier.issn0002-9327
dc.identifier.urihttp://hdl.handle.net/1721.1/116090
dc.description.abstractLet G be a finite cover of a closed connected transpose-stable subgroup of GL(n,R) with complexified Lie algebra g. Let K be a maximal compact subgroup of G, and assume that G and K have equal rank. We prove a translation principle for the Dirac index of virtual (g,K)-modules. As a byproduct, to each coherent family of suchmodules, we attach a polynomial on the dual of the compact Cartan subalgebra of g. This “index polynomial” generates an irreducible representation of the Weyl group contained in the coherent continuation representation. We show that the index polynomial is the exact analogue on the compact Cartan subgroup of King’s character polynomial. The character polynomial was defined by King on the maximally split Cartan subgroup, and it was shown to be equal to the Goldie rank polynomial up to a scalar multiple. In the case of representations of Gelfand-Kirillov dimension at most half the dimension of G/K, we also conjecture an explicit relationship between our index polynomial and the multiplicities of the irreducible components occurring in the associated cycle of the corresponding coherent family.en_US
dc.publisherJohns Hopkins University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1353/AJM.2017.0037en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleTranslation principle for Dirac indexen_US
dc.typeArticleen_US
dc.identifier.citationMehdi, Salah et al. “Translation Principle for Dirac Index.” American Journal of Mathematics 139, 6 (2017): 1465–1491 © 2017 Johns Hopkins University Pressen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMehdi, Salah
dc.contributor.mitauthorPandzic, Pavle
dc.contributor.mitauthorVogan, David A
dc.relation.journalAmerican Journal of Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-31T16:54:44Z
dspace.orderedauthorsMehdi, Salah; Pandžić, Pavle; Vogan, Daviden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9816-2395
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record