MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How robust are reconstruction thresholds for community detection?

Author(s)
Moitra, Ankur; Perry, Amelia E.; Wein, Alexander Spence
Thumbnail
Download1511.01473.pdf (424.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The stochastic block model is one of the oldest and most ubiquitous models for studying clustering and community detection. In an exciting sequence of developments, motivated by deep but non-rigorous ideas from statistical physics, Decelle et al. conjectured a sharp threshold for when community detection is possible in the sparse regime. Mossel, Neeman and Sly and Massoulié proved the conjecture and gave matching algorithms and lower bounds. Here we revisit the stochastic block model from the perspective of semirandom models where we allow an adversary to make 'helpful' changes that strengthen ties within each community and break ties between them. We show a surprising result that these 'helpful' changes can shift the information-theoretic threshold, making the community detection problem strictly harder. We complement this by showing that an algorithm based on semidefinite programming (which was known to get close to the threshold) continues to work in the semirandom model (even for partial recovery). This suggests that algorithms based on semidefinite programming are robust in ways that any algorithm meeting the information-theoretic threshold cannot be. These results point to an interesting new direction: Can we find robust, semirandom analogues to some of the classical, average-case thresholds in statistics? We also explore this question in the broadcast tree model, and we show that the viewpoint of semirandom models can help explain why some algorithms are preferred to others in practice, in spite of the gaps in their statistical performance on random models.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/116100
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2016
Publisher
Association for Computing Machinery (ACM)
Citation
Moitra, Ankur, William Perry, and Alexander S. Wein. “How Robust Are Reconstruction Thresholds for Community Detection?” Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2016 (2016), pp. 828-831.
Version: Original manuscript
ISBN
9781450341325

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.