MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resolution of the canonical fiber metrics for a lefschetz fibration

Author(s)
Melrose, Richard B; Zhu, Xuwen
Thumbnail
Download1501.04124.pdf (243.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We consider the family of constant curvature fiber metrics for a Lefschetz fibration with regular fibers of genus greater than one. A result of Obitsu and Wolpert is refined by showing that on an appropriate resolution of the total space, constructed by iterated blow-up, this family is log-smooth, i.e., polyhomogeneous with integral powers but possible multiplicities, at the preimage of the singular fibers in terms of parameters of size comparable to the logarithm of the length of the shrinking geodesic.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/116107
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of differential geometry
Publisher
International Press of Boston, Inc.
Citation
Melrose, Richard and Xuwen Zhu. "Resolution of the canonical fiber metrics for a Lefschetz fibration." Journal of Differential Geometry, 108 (2018), pp. 295--317.
Version: Original manuscript
ISSN
0022-040X
1945-743X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.