Show simple item record

dc.contributor.authorKrishnan, Dilip
dc.contributor.authorFreeman, William T.
dc.contributor.authorZoran, Daniel
dc.contributor.authorIsola, Phillip John
dc.date.accessioned2018-06-06T15:24:09Z
dc.date.available2018-06-06T15:24:09Z
dc.date.issued2016-02
dc.date.submitted2015-12
dc.identifier.isbn978-1-4673-8391-2
dc.identifier.urihttp://hdl.handle.net/1721.1/116143
dc.description.abstractWe propose a framework that infers mid-level visual properties of an image by learning about ordinal relationships. Instead of estimating metric quantities directly, the system proposes pairwise relationship estimates for points in the input image. These sparse probabilistic ordinal measurements are globalized to create a dense output map of continuous metric measurements. Estimating order relationships between pairs of points has several advantages over metric estimation: it solves a simpler problem than metric regression, humans are better at relative judgements, so data collection is easier, ordinal relationships are invariant to monotonic transformations of the data, thereby increasing the robustness of the system and providing qualitatively different information. We demonstrate that this frame-work works well on two important mid-level vision tasks: intrinsic image decomposition and depth from an RGB image. We train two systems with the same architecture on data from these two modalities. We provide an analysis of the resulting models, showing that they learn a number of simple rules to make ordinal decisions. We apply our algorithm to depth estimation, with good results, and intrinsic image decomposition, with state-of-the-art results.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICCV.2015.52en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleLearning Ordinal Relationships for Mid-Level Visionen_US
dc.typeArticleen_US
dc.identifier.citationZoran, Daniel, et al. "Learning Ordinal Relationships for Mid-Level Vision." 2015 IEEE International Conference on Computer Vision (ICCV), 7-13 December, 2015, Santiago, Chile, IEEE, 2015, pp. 388–96.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorZoran, Daniel
dc.contributor.mitauthorIsola, Phillip John
dc.relation.journal2015 IEEE International Conference on Computer Vision (ICCV)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZoran, Daniel; Isola, Phillip; Krishnan, Dilip; Freeman, William T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4988-9771
dc.identifier.orcidhttps://orcid.org/0000-0002-1411-6704
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record