Show simple item record

dc.contributor.authorHan, Gang
dc.contributor.authorVogan, David A
dc.date.accessioned2018-06-06T18:22:44Z
dc.date.available2018-06-06T18:22:44Z
dc.date.issued2014-12
dc.identifier.isbn978-1-4939-1589-7
dc.identifier.isbn978-1-4939-1590-3
dc.identifier.issn0743-1643
dc.identifier.issn2296-505X
dc.identifier.urihttp://hdl.handle.net/1721.1/116150
dc.description.abstractWe define a “finite maximal torus” of a compact Lie group G to be a maximal finite abelian subgroup A of G. We introduce structure for finite maximal tori parallel to the classical structure for maximal tori, like roots and the Weyl group; and we recall a large number of (previously known) examples. Keywords: Compact group; Maximal finite abelian subgroupen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-1-4939-1590-3_10en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleFinite maximal torien_US
dc.typeArticleen_US
dc.identifier.citationHan, Gang, and David A. Vogan. “Finite Maximal Tori.” Progress in Mathematics (2014): 269–303 © 2014 Springer Science+Business Media New Yorken_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorVogan, David A
dc.relation.journalSymmetry: Representation Theory and Its Applicationsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-31T17:03:16Z
dspace.orderedauthorsHan, Gang; Vogan, David A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9816-2395
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record