dc.contributor.author | Sheffield, Scott Roger | |
dc.date.accessioned | 2018-06-06T18:52:38Z | |
dc.date.available | 2018-06-06T18:52:38Z | |
dc.date.issued | 2016-09 | |
dc.identifier.issn | 0091-1798 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116156 | |
dc.description.abstract | We construct a conformal welding of two Liouville quantum gravity random surfaces and show that the interface between them is a random fractal curve called the Schramm–Loewner evolution (SLE), thereby resolving a variant of a conjecture of Peter Jones. We also demonstrate some surprising symmetries of this construction, which are consistent with the belief that (path-decorated) random planar maps have (SLE-decorated) Liouville quantum gravity as a scaling limit. We present several precise conjectures and open questions. | en_US |
dc.publisher | Institute of Mathematical Statistics | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1214/15-AOP1055 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Conformal weldings of random surfaces: SLE and the quantum gravity zipper | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Sheffield, Scott. “Conformal Weldings of Random Surfaces: SLE and the Quantum Gravity Zipper.” The Annals of Probability 44, 5 (September 2016): 3474–3545 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Sheffield, Scott Roger | |
dc.relation.journal | The Annals of Probability | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2018-05-01T18:01:15Z | |
dspace.orderedauthors | Sheffield, Scott | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-5951-4933 | |
mit.license | OPEN_ACCESS_POLICY | en_US |