Show simple item record

dc.contributor.authorSheffield, Scott Roger
dc.date.accessioned2018-06-06T18:52:38Z
dc.date.available2018-06-06T18:52:38Z
dc.date.issued2016-09
dc.identifier.issn0091-1798
dc.identifier.urihttp://hdl.handle.net/1721.1/116156
dc.description.abstractWe construct a conformal welding of two Liouville quantum gravity random surfaces and show that the interface between them is a random fractal curve called the Schramm–Loewner evolution (SLE), thereby resolving a variant of a conjecture of Peter Jones. We also demonstrate some surprising symmetries of this construction, which are consistent with the belief that (path-decorated) random planar maps have (SLE-decorated) Liouville quantum gravity as a scaling limit. We present several precise conjectures and open questions.en_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/15-AOP1055en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleConformal weldings of random surfaces: SLE and the quantum gravity zipperen_US
dc.typeArticleen_US
dc.identifier.citationSheffield, Scott. “Conformal Weldings of Random Surfaces: SLE and the Quantum Gravity Zipper.” The Annals of Probability 44, 5 (September 2016): 3474–3545en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorSheffield, Scott Roger
dc.relation.journalThe Annals of Probabilityen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-01T18:01:15Z
dspace.orderedauthorsSheffield, Scotten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5951-4933
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record