Show simple item record

dc.contributor.authorZhang, Yuhao
dc.contributor.authorSun, Min
dc.contributor.authorJayanta Joglekar, Sameer
dc.contributor.authorFujishima, Tatsuya
dc.contributor.authorPalacios, Tomas
dc.date.accessioned2018-06-06T19:28:13Z
dc.date.available2018-06-06T19:28:13Z
dc.date.issued2013-06
dc.date.submitted2013-03
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.urihttp://hdl.handle.net/1721.1/116161
dc.description.abstractThis paper demonstrates the compensation of the intrinsic positive charges in Al₂O₃ gate dielectric by fluorine ions in GaN metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs). Negatively-charged fluorine ions diffused into the oxide from the AlGaN barrier during the 250 °C atomic layer deposition compensate the intrinsic positive charge present in the Al₂O₃. This compensation is key to control the threshold voltage (Vth) of enhancement-mode (E-mode) transistors. A comprehensive analytical model for the V[subscript th] of fluorinated MOS-HEMTs was established and verified by experimental data. This model allows the calculation of the different charge components in order to optimize the transistor structure for E-mode operation. Using the proposed charge compensation, the V[subscript th] increases with gate dielectric thickness, exceeding 3.5V for gate dielectrics 25 nm thick.en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttps://doi.org/10.1063/1.4815923en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceZhang, Yuhaoen_US
dc.titleThreshold voltage control by gate oxide thickness in fluorinated GaN metal-oxide-semiconductor high-electron-mobility transistorsen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Yuhao et al. “Threshold Voltage Control by Gate Oxide Thickness in Fluorinated GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors.” Applied Physics Letters 103, 3 (July 2013): 033524 © 2013 AIP Publishingen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Microsystems Technology Laboratoriesen_US
dc.contributor.approverZhang, Yuhaoen_US
dc.contributor.mitauthorZhang, Yuhao
dc.contributor.mitauthorSun, Min
dc.contributor.mitauthorJayanta Joglekar, Sameer
dc.contributor.mitauthorFujishima, Tatsuya
dc.contributor.mitauthorPalacios, Tomas
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZhang, Yuhao; Sun, Min; Joglekar, Sameer J.; Fujishima, Tatsuya; Palacios, Tomásen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2849-5653
dc.identifier.orcidhttps://orcid.org/0000-0003-4858-8264
dc.identifier.orcidhttps://orcid.org/0000-0003-3081-6425
dc.identifier.orcidhttps://orcid.org/0000-0002-2190-563X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record