Show simple item record

dc.contributor.authorPandharipande, R.
dc.contributor.authorThomas, R. P.
dc.contributor.authorMaulik, Davesh
dc.date.accessioned2018-06-11T11:50:13Z
dc.date.available2018-06-11T11:50:13Z
dc.date.issued2016-12
dc.identifier.issn17538416
dc.identifier.urihttp://hdl.handle.net/1721.1/116183
dc.description.abstractWe study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3surfaces to characteristic numbers of stable pairs moduli spaces are proved. As a consequence, we prove the Katz-Klemm-Vafa conjecture evaluating λ g integrals (in all genera) in terms of explicit modular forms. Indeed, all K3 invariants in primitive classes are shown to be governed by modular forms. The method of proof is by degeneration to elliptically fibred rational surfaces. New formulas relating reduced virtual classes on K3 surfaces to standard virtual classes after degeneration are needed for both maps and sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds. Our approach uses a result of Kiem and Li to produce reduced classes. In Appendix A, we answer a number of questions about the relationship between the Kiem-Li approach, traditional virtual cycles, and symmetric obstruction theories. The interplay between the boundary geometry of the moduli spaces of curves, K3 surfaces, and modular forms is explored in Appendix B by Pixton.en_US
dc.description.sponsorshipClay Mathematics Instituteen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Division of Mathematical Sciences (DMS-0500187)en_US
dc.description.sponsorshipEngineering and Physical Sciences Research Council. Mathematics Programme granten_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/jtopol/jtq030en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleCurves on K3 surfaces and modular formsen_US
dc.typeArticleen_US
dc.identifier.citationMaulik, D., R. Pandharipande, and R. P. Thomas. “Curves on K 3 Surfaces and Modular Forms.” Journal of Topology 3, no. 4 (2010): 937–996.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMaulik, Davesh
dc.relation.journalJournal of Topologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-25T14:51:24Z
dspace.orderedauthorsMaulik, D.; Pandharipande, R.; Thomas, R. P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7525-318X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record