MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Computationally Efficient FPTAS for Convex Stochastic Dynamic Programs

Author(s)
Halman, Nir; Nannicini, Giacomo; Orlin, James B
Thumbnail
Download13094774x.pdf (428.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We propose a computationally efficient fully polynomial-time approximation scheme (FPTAS) to compute an approximation with arbitrary precision of the value function of convex stochastic dynamic programs, using the technique of K-approximation sets and functions introduced by Halman et al. [Math. Oper. Res., 34, (2009), pp. 674-685]. This paper deals with the convex case only, and it has the following contributions. First, we improve on the worst-case running time given by Halman et al. Second, we design and implement an FPTAS with excellent computational performance and show that it is faster than an exact algorithm even for small problem instances and small approximation factors, becoming orders of magnitude faster as the problem size increases. Third, we show that with careful algorithm design, the errors introduced by floating point computations can be bounded, so that we can provide a guarantee on the approximation factor over an exact infinite-precision solution. We provide an extensive computational evaluation based on randomly generated problem instances coming from applications in supply chain management and finance. The running time of the FPTAS is both theoretically and experimentally linear in the size of the uncertainty set.
Date issued
2018-06-11
URI
http://hdl.handle.net/1721.1/116205
Department
Sloan School of Management
Journal
SIAM Journal on Optimization
Publisher
Society for Industrial & Applied Mathematics (SIAM)
Citation
Halman, Nir et al. “A Computationally Efficient FPTAS for Convex Stochastic Dynamic Programs.” SIAM Journal on Optimization 25, 1 (January 2015): 317–350 © 2015 Society for Industrial and Applied Mathematics
Version: Final published version
ISSN
1052-6234
1095-7189

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.