Show simple item record

dc.contributor.authorOberdieck, Georg B
dc.date.accessioned2018-06-11T18:56:24Z
dc.date.available2018-08-05T05:00:06Z
dc.date.issued2017-10
dc.date.submitted2016-11
dc.identifier.issn0025-5874
dc.identifier.issn1432-1823
dc.identifier.urihttp://hdl.handle.net/1721.1/116224
dc.description.abstractLet X = S × E be the product of a K3 surface S and an elliptic curve E. Reduced stable pair invariants of X can be defined via (1) cutting down the reduced virtual class with incidence conditions or (2) the Behrend function weighted Euler characteristic of the quotient of the moduli space by the translation action of E. We show that (2) arises naturally as the degree of a virtual class, and that the invariants (1) and (2) agree. This has applications to deformation invariance, rationality and a DT/PT correspondence for reduced invariants of S × E.en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00209-017-1953-5en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleOn reduced stable pair invariantsen_US
dc.typeArticleen_US
dc.identifier.citationOberdieck, Georg. “On Reduced Stable Pair Invariants.” Mathematische Zeitschrift 289, no. 1–2 (October 20, 2017): 323–353. doi:10.1007/s00209-017-1953-5.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorOberdieck, Georg B
dc.relation.journalMathematische Zeitschriften_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-20T03:43:10Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Deutschland
dspace.orderedauthorsOberdieck, Georgen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record