MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deblending random seismic sources via independent component analysis

Author(s)
Pisupati, Pawan Bharadwaj; Demanet, Laurent; Fournier, Aime
Thumbnail
Downloaddeblending-ica.pdf (564.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We consider the question of deblending for seismic shot records generated from simultaneous random sources at different locations, i.e., how to decompose them into isolated records involving one source at a time. As an example, seismic-while-drilling experiments use active drill-string sources and receivers to look around and ahead of the borehole, but these receivers also record noise from the operation of the drill bit. A conventional method for deblending is independent component analysis (ICA), which assumes a “cocktail-party” mixing model where each receiver records a linear combination of source signals assumed to be statistically independent, and where only one source can have a Gaussian distribution. In this note, we extend the applicability of ICA to seismic shot records with markedly more complex mixing models with unknown wave kinematics, provided the following assumptions are met. 1. The active source is fully controllable, which means that it can be used to input a wide range of non-Gaussian random signals into the subsurface. 2. The waves are a linear function of the source, have a finite speed of propagation, and follow finite-length paths. The last assumption implies a scale separation, in frequency, between the mixing matrix elements (Green’s functions) and the random input signals. In this regime, we show that the key to the success of ICA is careful windowing to frequency bands over which the Green’s functions are approximately constant.
Date issued
2017-09
URI
http://hdl.handle.net/1721.1/116240
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Mathematics
Journal
SEG Technical Program Expanded Abstracts 2017
Publisher
Society of Exploration Geophysicists
Citation
Bharadwaj, Pawan, et al. "Deblending Random Seismic Sources via Independent Component Analysis." SEG Technical Program Expanded Abstracts 2017, pp. 4898–902.
Version: Author's final manuscript
ISSN
1949-4645

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.