MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convex Recovery From Interferometric Measurements

Author(s)
Demanet, Laurent; Jugnon, Vincent
Thumbnail
Downloadconvex-interferometric-revised.pdf (1.012Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper discusses some questions that arise when a linear inverse problem involving Ax = b is reformulated in the interferometric framework, where quadratic combinations of b are considered as data in place of b. First, we show a deterministic recovery result for vectors x from measurements of the form (Ax)[subscript i] [bar over (Ax)[subscript j]] for some left-invertible A. Recovery is exact, or stable in the noisy case, when the couples (i, j) are chosen as edges of a well-connected graph. One possible way of obtaining the solution is as a feasible point of a simple semidefinite program. Furthermore, we show how the proportionality constant in the error estimate depends on the spectral gap of a data-weighted graph Laplacian. Second, we present a new application of this formulation to interferometric waveform inversion, where products of the form (Ax)[subscript i] [bar over (Ax)[subscript j]] in frequency encode generalized cross correlations in time. We present numerical evidence that interferometric inversion does not suffer from the loss of resolution generally associated with interferometric imaging, and can provide added robustness with respect to specific kinds of kinematic uncertainties in the forward model A.
Date issued
2017-04
URI
http://hdl.handle.net/1721.1/116246
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Mathematics
Journal
IEEE Transactions on Computational Imaging
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Demanet, Laurent, and Vincent Jugnon. “Convex Recovery From Interferometric Measurements.” IEEE Transactions on Computational Imaging, vol. 3, no. 2, June 2017, pp. 282–95.
Version: Author's final manuscript
ISSN
2333-9403
2334-0118

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.